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Abstract

Coupling of the Reynolds-averaged Navier-Stokes equations, rigid-body dynamics, and a pitch at-

titude control law is demonstrated in two- and three-dimensions. The application problem was the

separation of a canard-controlled store from an open-flow rectangular cavity bay at a freestream Math

number of 1.2. The transient flowfield was computed using a diagonal scheme in an overset mesh fi'ame-

work, with the resultant aerodynamic loads used as the forcing fimctions in the nonlinear dynamics
equations. The proportional and rate gyro sensitivities were computed apriori using pole placement

techniques for the linearized dynamical equations. These fixed gain values were used in the controller

for the nonlinear simulation. Reasonable comparison between the fifll and linearized equations for a

perturbed two-dimensional missile was found. Also in two-dimensions, a controlled store was found

to possess improved separation characteristics over a canard-fixed store. In three-dimensions, trajec-

tory comparisons with wind-tunnel data for the canard-fixed case will be made. In addition, it will

be determined if a canard-controlled store is an effective means of improving cavity store separation

characteristics.
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Introduction

The design of high-performance aircraft has in the past typically been compartinentalized by dis-

cipline, most commonly structures, fluids, and controls. However, as performance demands escalate.

aircraft systems have become increasingly interrelated, l' 2 Therefore, there is a need to investigate the

optimization of the aircraft in its entirety, not simply by evaluation of its sub-systems.

This type of multidisciplinary analysis is currently accomplished with simplified physical models.

such as panel flow and modal structural codes. However, in critical regions of the flight envelope these

linear methods can fail, leading to the necessity for higher-order models. 3" 4 Obviously, this increased

physical fidelity comes with a high computational price, and hence fewer design cycles are permitted

as coInpared to the linear methods.

Providing a capability for the simulation of the nonlinear interaction of fluids and rigid body motion

will be useflfl in several ways. First, the simulation could be used to validate the implementation of a

control law derived using conventionally deterinined sensitivity coefficients. Although one must be wary

of results obtained numerically, simplifications used to compute these force and moment derivatives

will not be present in a Navier-Stokes simulation. Second, the coupled simulations could be used to

develop a control law where nonlinear effects are important, using the computed aerodynamic forces and

moments instead of tabulated empirical relationships. 5 Hence, computational design and prototyping

of the aircraft control system offers the capability of reducing aircraft, design cycle cost and enhancing

safety as well as iinproving performance.

The effort documented here begins to address the interaction of the disciplines of fluids, rigid

body dynainics, and controls in nonlinear flight regimes. In order to assess the accuracy of these

initial computations, a problem which could be compared against analytic and experimental results

was chosen: the cavity store separation problem. Dix and Dobson's 6 recent experimental study of

the separation of stores from cavity bays will be used as a basis for comparison. These wind-tunnel

tests determined the trajectory of an uncontrolled missile from a rectangular cavity and will be used

to validate the canard-fixed computation.

Previous computational efforts have shown that the component problems of cavity flows r' s, 9 and

uncontrolled store separation 1°' I I can be solved with reasonable accuracy using overset grid methods.

It should be noted that inviscid solutions to the cavity store separation problem, with bodies in relative

motion, have been obtained on tetrahedral meshes, l'2 However, although these unstructured methods are



/,,_ml_trically l-_w_'rf_d, a m,';tns ,)f consist_mtly accounting fi,r vi_c_us (,ffiwts is c,ur_,ntly la,ki11_, tier,..

rh,, c,,mt)in_,_[ tn,)}_h'm ,_f visc,)lls cavity flow. rigid ]m(ty dynamics, and ;ultomatic c,mtr(,1 t,,,'hili(i,1, _

is addrf'ss,'d in a general manner using the own'set mesh framework.

The following sections discuss the approach used to solve the coupled system and the r,,sults ,)t_-

tained for s{'.veral two- and three-dimensional cases. Comparisons of numerical results are made against

lincarizc{l ()r cxt)erinlental res, dts where awdlable.

Approach

The procedure used to solve these coupled problems is shown schematically in Fig. 1. The process
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Fig. 1: Overall coupled system approach

begins with the generation of the blocked mesh system while holding the relative position of the

geometry in the initial position. After establishing the initial grid connectivity information, the solution

of the flowfield can begin. Obviously, depending on the problem being addressed, this fixed grid solution

may be steady or possess a bounded envelope. When this fixed-geometry flow solution is satisfactory.

the motion of the body commences.

The integrated aerodynanlic loads acting on the body are provided to the 6-DOF portion of the

code along with the body state vector. Using this information, the body position and attitude is then

integrated one time step, and kinematic constraints are applied. The controller also uses the body state

to compute new effector settings, whM1 are then applied to all relevant grids. Finally. since the grids



h_tveoh;rag,'(1 v,,l_ttiv,' p,,siti,ms, th,' inr,:rgrid c(,mm, udc;ttion is r,.-esta})lish,,d. Thi_ pr_),','s._ v,'t-.a'_

for each time step ,mtil the simulation is corot)let,'. A (tetail(_d descripti(m ,)f tit,' comp,mmit tu'(,cvss,>

is given below.

Flow Solver

The fluid field was cmntmted via the Reynolds-averaged Navier-Stokes (RANS) equations using tho

diagonal scheme of Pulliam and Chaussee la implemented in the overset grid framework of Benek. Bun-

ing, and Steger. L4 The equations were integrated through Euler implicit time marching and second-order

spatial differencing with viscous wall conditions specified as no-slip, zero normal pressure gradient, and

adiabatic. Information transfer across overset mesh boundaries was implemented using t rilinear inter-

polation of the dependent variable vector, O = [p, pu, fro, [nv, e] T. The flow solver cost is 13its�cell�step

on a Cray Y-MP.

Turbulence Model

In these computations, the slowly time-varying component of the flow is resolved, while rapid fluc-

tuations are modelled. The algebraic turbulence model of Baldwin and Lomax, 15 as implemented by

Buning, 16 is described below using a flow in the (x, y) plane.

The wall-bounded flows use the original Baldwin-Lomax model, with the addition of a variable

Fmax cutoff. The grids are chosen such that a unique wall distance is readily available.

The cavity aperture spanning shear layer uses an eddy viscosity developed using F(y) = ylw I, as

suggested by Baldwin and Lomax 15 for wake regions. This results in

Ftt, a_.e

,,.., Yma.r U2i f

= ¢--'tv k

Udif 2

= c ,k IO.J]maz

where specification of C¢,k is discussed below and the velocity difference is modified to be half the total

velocity difference between the streams in the specified shear layer region

= ¢( + - + v'/l l.o.

The free shear layer model is now given by

u'_i f

#t = pKCcpCu, k I 1,.o (1)

after dropping the Klebanoff intermittency flmetion. Unmodified nlodel constants K = 0.0168 and

Cq, = 1.6 are used.

The magnitude of the eddy viscosity in the free shear layer model can be altered with C,,.t.. Esti-

ination of the proper vahle of Cu,k begins by using G6rtler's shear layer solution:

ul + u2 l +--erf(_)
u -- 2 It 2 + U 1

2 fz . ey

J0eff( ) = e-e'd ,

where ui and u2 are the velocities of the slow and fast streams and { is the similarity coordinate. The

spreading parameter a is inversely related to the spreading rate, db/dx, where b is a measure of the
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Z_'TI _ is (711.

Giirtl.r's sol,lti,m can |,e ,>ed t,o rid, ermine t,he nlaximunl vorticit, y magnitude as fl)llows:
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]D-} I TT_a.r

Au = (u'2 - ul)

Now. using Prandtl's mixing length assumption and scaling laws for jet boundaries, eddy viscosity

can also be expressed as

#t ,_ pg21_ I
&u

pg2 b

= KopbAu (2)

where K0 = 4-_%"

Setting Eqs. 1 and 2 equal results in

Cu, k = (aoKCcp v/_) -1

and only a0 remains to be specified. Empirical estimates of a0 range from 9.0 to 13.5. 9 For this series

of cavity flow efforts % was set to 11.0, resulting in a vahle of C=,k = 1.91.

Grid Generation and Communication

Computation of the loads generated by cavity flows requires accurate representation of the geometry

as well as the flowfield. Typically, a significant effort in grid generation is required before flow analysis

can begin. Since matching zone faces are not required for the overset method used here, recent advances

in algebraic lr and hyperbolic is methods can be used. Hyperbolic grid generation, which gives good

spacing and orthogonality control, was used for the wall-bounded regions, while algebraic grids were

used in shear flow regions. Advantages of this type of grid system include straightforward specification

of the turbulent regions and allowance for independent refinement of each zone. This topology also

permits the re-use of nleshes for configuration studies.

Exchange of flow information is accolnplished using a domain connectivity fimction, with the donor-

receiver relationship established at each time step using an efficient technique.19 Although the cost of

re-establishing intergrid communication is problem dependent, the computational expense is generally

half of that used by the diagonalized flow solver. The initial location for the hole-cutters was specified

using a graphical interface, 2° after which the nmvement of the grids and hole cutters were updated

automatically. An example of the overset mesh topology used is shown in Fig. 2. which shows the

configuration at an instant in the separation process.

Kinematics and Rigid Body Dynamics

Although details of the six-DOF dynamical equations can be found elsewhere, 21 briefly the rotational

dynamics is described by Euler's equations of nmtion which aligns the xyz coordinates with the body

principal axes at the center of gravity. For instance, for a rotation 0 about an axis _. Euler parameters

can be specified as

[ o o oe= )_lsin_, A2sin_, )_3sin , cos



Fig. 2: Coarsened grids after release

These Euler parameters, integrated according to tile rotational body dyilamics, are updated and stored

for each grid. 1°' 19 Kinematic constraints can be imposed during tile ejection process or for restricted-

DOF simulations. In addition, the assumption of rigid-body dynamics eliminates the need to store tile

component grids for all time, since the Euler parameters may be used to compute grid attitude from

tile initial position.

Rotating effectors were implemented by summing the relative commanded effector and body angular

velocities, co. Integration of co gives the proper effector attitude relative to the initial grid positions.

The hinge line location is updated according to the attitude of the body. Storage of the hinge line and

Euler parameters associated with each grid allows nesting of parent-child bodies to an arbitrary level

without modification to the grid communication and support software.

Pitch Attitude Control Law

The fourth-order system shown in Fig. 3 was used as the system model for both the two- and

_CC trim ] Canard Missile

I ' " / Servo Dynamics

I .. +lul%-I ol- 6 r-clo
Oc  ;fl =i rq-'l s I--"

Commanded - Amplifier _1,-- ' ' _ I

Pitch _

I Rate Gyro I

Fig. 3: 2-D missile: Block diagram

three-dimensional missile cases. In Fig. 3 the plant and servo can be expanded as

ds+e 1

5c as `2 + bs + c' f r

where the servo time constant was taken as r = _ s. The plant coefficients were determined from
IO

the governing equation: they are composed of geometric and flow information, as well as the stability

derivatives. The stability derivatives were determined from linearized supersonic airfoil theory in the

two-dimensional cases and from direct, computation in three-dimexlsions. Pole placement techniques

and linearized system time response were used to determine the proportional. K_, and the rate gyro,

K,,, sensitivities.



Results and Discussion

Tlw m_.th()d ,b.scri},.,! al,,,v, was at)t)li.d in two-(limensi(ms to a t),n'turb.d o,w (t,._r,,,.-of-fr,,c,t,,m

('ase and a rhrre (h'gr(_e-,)f-fr,.',t,)nl (';wiry store set)aration process. The thre(.-dim,msi(mal r('s, fits ar,.

in progrrss.

One Degree-of-Freedom Simulation

In order to provide some measure of validation, a two-dimensional, 1-DOF simulation was imple-

mented at a flight altitide of 45,000 ft. Comparison of the linearized and tile coupled nonlinear system

response for a small perturbation allowed assessment of the basic methodology.

Linearized Dynamics

The equation of motion, My = IyyiJ, after neglecting the pitch-damping term, is

My = q_c {[(CzoSd)¢ - (CtoSd)t]8 + (CloSdS)c}

where tile body was pinned at the location of the center of gravity for this analysis.

Expressing the system in a state variable representation, with i = [8, 0, 8, 6¢]T, then the open loop

equation can be expressed as

0 1 0 0

0 0 1 0

0 ¢ b d

a 0 a a0 0 -f

x+

0

0
u

0

g

where

J: = Ax + Bu; y = Cx; u = Qz + Rr

The closed loop equation is expressed as

k = Ax + B[Qz + Rr] = [A + bQ]x + Kabr

A+bQ =

0 1 0 0

0 0 i 0

0 _c _b_ d
_2 a tl

-_K. -g(K. + -_K_) -gKr --f

K_b = [0, O, O, (Ka 4- K,)g] T

The state can be computed using Euler explicit integration

[ 1x _+l =At (A+bQ+-_)x +K_br" .yn+l = cxn+l

The gain levels. K, = 1.2 and Kr = 0.06 S, were computed using conventional root locus metho(ts.

These gains were input into a linearized one degree-of-freedom dynamics routine to verify implementa-

tion of the control law. The result of the linearized analysis is shown in Fig. 4, which shows a slightly

divergent envelope for the canard-fixed case, and damped behavior for the closed-loop system. Note

that a canard deflection limiter was applied to represent stalling of the airfoil.
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Fig. 4: Linearized 2-D missile: body orientation and canard deflection time histories for both uncontrolled
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Nonlinear Coupled Simulation

Tile control law developed above was also implemented into the code which coupled tile RANS

equations with rigid-body dynamics. From Fig. 3, the control law can be expressed as

- g e)-s+f

and integrated using Euler explicit integration

5_+1 _ gAt
fAt+l {[Ka(oc-en)-K'8"+KtO'] +5c n}

which can then be subjected to limit constraints. The resultof the nonlinear solution shown in Fig. ,5

for both canard-fixed and controlled cases. After convergence to a steady-state solution, an accuracy-

limited thne step size of 46#s was used, with a computational cost of five Cray Y-MP CPU hours.

Grid comnmnication was approximately one-third of the overall CPU time. Figure, 5 shows similar

behavior to the linearized cases, again with a modestly growing envelope for the canard-fixe(t case. and

damped oscillations for the controlled case. This comparison provides a degree of validation of the

implementation of the control law in the coupled code.

2-D Resonating Cavity

In order to establish confdence in the numerical method, a two-dimensional cavity computation

was undertaken to demonstrate and validate self-induced cavity resonance. Details of this and three-

dimensional cavity computations may be found elsewhere. 7

The test conditions, specified to nlatch experiment, 22 were

M_c = 0.9, ReL = 1.47 x 106, L = 8 in.

p:¢ =0.40 kg/m a, p_ =2.9x 10 4 N/m 2
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Fig. 6: 2-d cavity: (a) pressure history and (b) power spectra comparison

mechanism identified from Rossiter's experiments. Briefly, the cycle begins with the propagation of an

acoustic wave from the aft wall of the cavity to the forward bulkhead. Wave reflection from the forward

wall causes the shear layer to bow outwards, shedding vorticity. The deflected shear layer conw.,cts

downstream and induces another cycle. This coupling of the acoustic and vortical fieMs is quantified

by Rossiter's empirical model, given in Fig. 6b, which gives only feedback Dequencies.

In the frequency domain, comparison of Rossiter's data to present results indicate agreement in

frequency at the peak magnitudes, as shown in Fig. 6b. Magnitudes are higher for the present case by

about 2 (lB. which can be explained from dimensionality argunlents. The solution was also found to

be insensitive to second-order dissipation levels within the range 0.3 to 0.5. Figure 6b also shows the

resonant modes predicted by Rossiter's equation, showing that K = 0.56 gives better prediction of the

higher modes. Finally, the vertical knife edge schlieren images of Fig. 7 show the qualitative agreement

between computed and observed '23 radiation patterns.

10
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2-D Controlled Store Separation

Using tile control law developed for tile 1-DOF simulation above, albeit with an arbitrarily chosrn

0c = 5°, a 3-DOF simulation of a store separating from a cavity was implemented. The separation

began with the application of an 18000 N ejection force for 0.044 s, with corresponding acceleration

of about 20g, during which the controller w_ off and no angular velocity was imparted to tile store.

The solution was initialized with the store fixed in carriage position, allowing damping of the starting

numerical transients. Following convergence of the cavity acoustic envelope, the same accuracy-limited

time step size of 46#s wins used. The time step size was chosen such that the streamwise Courant

number wa,s about unity in tile shear layer. This restriction is equivalent to allowing an acoustic wave

to propagate only one cell in a single step. Ten grids were used for this 1.3 x 10 .5 point (tomain. The

result, shown in Figs. 8 and 9, shows that tile nose of controlled store remains pointed away from the

parent body, while the canard-fixed store is pointed towards the parent 0.3 s after release. Sincr the

controlled store is commanded to point away from the parent, the separation is faster for the coal: ,11('(t

case than for the canard-fixed store. Inspection of the normal force history shows a component of about

50 Hz. corresponding to the second stage of Rossiter's fornmla. 9

3-D Missile Stability Derivatives

In order to determine the proper feedback gains, the stability derivatives of the missile must be

comt)uted. For this 3-DOF simulation this includes C,_o,C,,_ , and Cm_. These parameters were
comt)uted from four cases: using a nominal 0 = _ic= 0, a constant pitch attitude 0 = 0.04 tad, ?_c= O,

a constant deflection angle 0 = 0, 5_ = 0.04rad, and a constant pitch rate 0 = 9 rad/s. Canard motion

wins permitted by the 1 in. nominal gap between the missile body and canard. This is a similar

arrangement to the actual missile, albeit without the connector pin in the numerical model. The force

and moment history wa,s converged three orders of magnitude, approximately 2000 steps, on this 18

grid solution containing approximately 1.5 million points. Figure 10 shows the geometry used for this

portion of the study, along with coefficient of pressure, Cp, contours.

3-D Cavity Store Separation

The geometry, shown in carriage position, can be seen in Fig. 11. The domain contains about 2.2

million points distributed in 25 grids, with the missile grids being re-used from the previous stability

derivative study. An example of the initialization of the cavity store separation problem is shown

in Fig. 12. This store-fixed sinmlation will be run approximately five characteristic times, until the

artificial starting transients have dissipated, after which ejection will begin. The ejection forces applied

to the store will be such that the velocity at the end of the 8 in. piston stroke wa.s 30 ft/s normal to

ll



Fig. 8: 2-D controlled store separation: instantaneous Mach contours
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Fig. 10: 3-D missile: Cp contours
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Fig. 11" 3-D store separation: grids for missile in carriage

Conclusions

A pitch attitude control law was implemented in a coupled Navier-Stokes/rigid-body dynanfics code.

Comparison of nonlinear with linearized results showed reasonable comparison for the perturbed case

with the controller active or off. Application of the control law to a two-dimensional, three-degree-of-

freedom cavity store separation revealed improved trajectory characteristics. The generalized coding of

aerodynamic effector kinematics in the coupled code will allow rapid implementation of existing control

laws. Simulation of the coupled nonlinear aircraft trajectory can then be used to computationally

prototype the control system.

Note to the Reviewer

Computation of a three-dimensional canard-fixed store separating fronl a cavity is in progress and

will be compared to the experimental data of Dix and Dobson. 6 Comparison of the numerical and

experimental results will provide an additional measure of validation. After completion of the uncon-

trolled case, a simulation of the pitch-controlled case will commence. Determination of the feedback

gains for this three-dimensional simulation will require the computation of the stability derivatiw,s.

which will also be accomplished via the Navier-Stokes equations. Assessment of the uncontrolled and

controlled c_es will show if improved cavity store separation characteristics can be achieved via canard

cffectors.

14



Fig. 12: 3-D store in carriage: instantaneous contours of p_L on the symmetry plane and Cl, contours on

the wetted surfaces
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